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• SAGE III on ISS background

• Approach to Thermal Vacuum (TVAC) Testing and 
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– Instrument Assembly TVAC

– Chamber Characterization

– Instrument Payload TVAC

– Summary of lessons learned

• Correlation to Flight Data

• Summary
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SAGE III on ISS Background

• Stratospheric Aerosol and Gas Experiment

• Fifth in a series of instruments developed to monitor ozone, aerosols, and other 

trace gases in Earth’s stratosphere and troposphere

• Partnership between NASA Langley Research Center (LaRC), Thales Alenia 

Space- Italy (TAS-I), and Ball Aerospace and Technologies Company (BATC)

• Launched to the International Space Station (ISS) via Space X Falcon 9 in 

February 2017

• Consists of two payloads – Instrument Payload (IP) and Nadir Viewing Platform 

(NVP)
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General TVAC Test Approach

• All TVAC test scenarios modeled in Thermal Desktop®

(TD) within system flight model

• Primary goals:

– Evaluate behavior in vacuum at hot and cold conditions 

– Obtain data for model correlation

• Test profiles included these 5 thermal balances:

– Unpowered hot & cold

– Heater-only cold

– Operational hot & cold

• Transient unpowered cool-down with constant 

environment included in test profile
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General Correlation Approach

• Pre-test model predictions used as starting point

• Thermal model correlated to balances and transient 

power-on and power-off

– Unpowered cases completed first; fewest variables

• Measurements included flight sensors, test TCs, and 

subsystem current draw

• Main adjustments made during correlation:

– Contacts between parts 

– Optical properties

– Component dissipated power

• Transient analysis performed for better accuracy

• Root-mean-square (RMS) errors calculated over entire 

timeline, all sensors 

• Goal for model correlation: RMS error < 5°C
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Interface Adapter Module (IAM) TVAC

• New build, flight computer and power distribution unit

• MLI on back, silver Teflon all other sides

• Operational and survival heaters controlled via 

mechanical thermostats

• Tightly-coupled to chamber interface plate in flight-like 

configuration using thermal epoxy

• Primary adjustments made in correlation: 

– Power dissipation

– Conductors from boards to chassis, chassis to adapter plate
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IAM Correlation Quality
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Steady-State Results
Hot 

Unpowered

Hot 

Powered

Cold 

Unpowered

Cold 

Powered

Overall

RMS

Overall RMS error (°C) 1.7 1.1 1.0 3.1 1.9

Flight sensor RMS error (°C) 0.9 1.1 0.7 3.7 2.0

Avg error (°C) 0.4 0.4 -0.7 -1.5 -0.4

• Overall RMS error is less than 2°C - indicates excellent correlation

Transient Results Hot Cooldown

Overall RMS error (°C) 1.1

Flight sensor RMS error (°C) 1.2

Avg error (°C) 0.1



IAM Correlation Plots
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Hot Powered Steady-State 4-hr Cool-Down Transient



IAM TVAC Correlation Lessons Learned

• Test TCs should be attached with high-conductivity tape 

to minimize error if TC bead lifts off surface

• Mock payload interfaces should be as flight-like as 

possible for subsystem-level TVAC

– Surface characteristics (roughness, finish, etc.)

– Fastener torque specifications

– More temperature sensors typically available to characterize 

interface
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Instrument Assembly (IA) TVAC

• Consists of the Sensor Assembly (SA) and Instrument 

Control Electronics (ICE) 

– Hardware built in late 1990’s

• IA contains heaters, rotating azimuth motor, rotating 

scan mirror, thermo-electric cooler (TEC)

• Exterior surfaces mainly silver-Teflon

• Conductive interfaces designed to be flight-like

• Quartz lamps used for heating (6 zones)

• Primary adjustment made in correlation

– Contact between parts
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IA Correlation Quality

• Overall RMS error for flight sensors less than 1.5°C -

indicates excellent correlation

• Main adjustments were to contacts
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Balance Results
Hot 

Unpowered

Hot 

Powered

Cold 

Unpowered

Cold 

Heater-only

Cold 

Powered

Overall 

Average

Overall RMS error (°C) 1.5 1.7 1.3 2.8 3.9 2.4

Flight sensor RMS error (°C) 0.6 2.2 0.5 1 1.8 1.4

Avg error (°C) 0.0 -0.6 0.3 1.1 0.6 0.3

Transient Results Hot 

Powerup

Hot 

Cooldown

Cold 

Powerup

Cold Heater

Powerup

Cold

Cooldown
Overall 

Average

Overall RMS error (°C) 1.4 0.4 2.4 2.8 1.0 2.0

Flight sensor RMS error (°C) 1.4 0.6 1.2 1.7 0.9 1.3

Avg error (°C) -0.1 0.1 1.3 0.8 -0.7 0.3



IA Correlation Plots
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Cold power-on transient Azimuth heater operation



IA TVAC Correlation Lessons Learned

• Correlation of heater operation to heater-only balance 

worked well

• Unpowered cool-downs helpful in thermal mass correlation

• Transient cases provide more accurate prediction of 

behavior, even for quasi-steady-state

• Correlation of TEC behavior

– Required modification of TEC parameters due to degradation

– Test data when TEC data went out of the control range valuable

• Chamber shroud had larger gradients than expected, 

should be well-instrumented

• Issues with quartz lamps led to facility characterization test 

to perform IA model correlation

– Fraction of infrared (IR) vs. solar

– No power measurement
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TVAC Chamber Characterization

• Heater plate system designed for payload-level test

– Avoids quartz lamps

– Allows for independent control of subsystems 

• Test to characterize heater plate system 

– Verify capability to achieve target temperatures

– Determine heater plate gradients

– Correlate thermal model of chamber

• Test paused to remove MLI from two plates to achieve 

goal temperatures; repeated test conditions 

• Primary correlation adjustments: 

– MLI

– Plate emissivity

– Contact between plates and frame

– Mesh on plates
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Characterization Correlation Quality

• Overall RMS error for final configuration below 5°C -

indicates good correlation

– Errors higher in original configuration due to using standard TD 

modeling method for MLI covering surfaces at different 

temperatures

– Slight tendency toward over-prediction

• Model accurately tracked response of neighboring plates 

to heater power changes - gives a high level of 

confidence in the model
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Configuration Change

Hot 

Survival
Hot Op

Cold 

Survival
Hot Op 2

Cold 

Survival 2

Overall 

Average

Errors on mock 

payload and  

ExPA (°C)

RMS error 4.8 4.7 5.8 1.9 3.8 4.2

Average error 4.5 0.7 -1 -1.5 3.1 1.2

Errors on heater plates 

and frame (°C)

RMS error 3.4 3.4 3.9 2.9 3 3.3

Average error 2.1 0.9 -1.5 1.4 1.4 0.9



Characterization Correlation Plots
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Neighboring plate reaction to

cooldowns

Heater plate cooldown correlation



Characterization Lessons Learned

• For MLI covering multiple plates at different 

temperatures, cannot use Insulation tab on TD surface

– Insulation must be modeled explicitly to get correct radiative 

transfer under MLI

• Place temperature sensors to verify basic assumptions, 

such as thermal contact between parts

• Chamber emissivity lower than assumed at cold 

conditions

• Plate gradients ~10°C despite even distribution of 

heaters across aluminum plates

– Well-predicted following correlation
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Instrument Payload (IP) TVAC

• Flight IP and custom heater plate system

• IP contains operational and survival heaters, multi-layer 

insulation (MLI), silver Teflon, and TECs

• Included orbit simulations for correlation to a flight-like 

transient motor power profile

• Primary adjustments made in correlation:

– Contact between trolley and chamber

– Emissivity

– MLI effective emissivity

– Conductance to the ExPA and between parts
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Overall IP Correlation Quality

• Facility thermocouple data not included in RMS error 

calculations due to excessive noise

• Overall RMS error is less than 2.5°C - indicates 

remarkable correlation for a complex model

– Slight tendency toward under-prediction
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Hot 

Unpowered 

Cold 

Unpowered 

Hot 

Powered 

Cold 

Powered 

Hot 

Cooldown

Cold 

Cooldown

Overall 

average

RMS error for 

flight sensors 

(°C)

1.1 2.7 1.7 2.8 3.2 2.6 2.4

Avg error for 

flight sensors 

(°C)

-0.9 -0.1 0.1 0.8 -2.3 -1.2 -0.6



IP Correlation Plots
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Correlation to operation of heater and 

TEC

Correlation to operation of elevation 

motor during science events
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IP Correlation Plots
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Hot powerup transient correlation
Hot unpowered transient 

correlation



IP Correlation Lessons Learned

• High noise observed in test TCs due to wire routing –

check prior to test start

• Balance sequence effective for correlation

– Unpowered correlation first, quasi-steady-state and then 

transient

– Transient for heater power-up

– Transient to powered operation

– Powered balance

– Power-off for cooldown transient

• Accurate power calculations required measured current 

and resistance 

• Run time reduced via modification of TEC power 

dissipation equation 
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Flight Correlation

• SAGE III launched on SpaceX CRS-10 mission in 

February

• Operational on ELC-4 since March 10th

• Beta angle range experienced to-date between -38° and 

+73°

• Primary areas of focus:

– Worst-case beta angles for hot operations

– Elevation motor temperature during science events

– ExPA temperature at high-negative beta

• Major model adjustments:

– Power

– Optical properties

– Conductors between internal instrument parts
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Flight Correlation Quality

• Beta 41° worst-case hot case for most components

– Good matching; overall RMS error is < 3°C

• Beta -38° worst-case hot case for SA (to-date)

– Good matching for SA

– ExPA-coupled components under-predicting by up to 12°C
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β = 73° β = 50° β = 41° β = -24° β = -38° Overall

RMS error for 

flight sensors 

(°C)
8.4 3.9 2.6 3.7 4.3 4.6

Avg error for 

flight sensors 

(°C)
8.0 3.1 -0.3 -2.7 -3.4 1.0



Flight Correlation Plots
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Unpowered Correlation

(β = 45⁰)
Limb-Scatter Event Correlation

(β = 41⁰)



ExPA Temp as a Function of Beta Angle

• ExPA under-prediction increases as beta becomes more 

negative
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Conclusions

• Model quality very good: overall TVAC RMS error < 3°C

• Lessons learned: test definition and setup 

– Create test conditions focused on thermal behavior for correlation

– Quartz lamps solar output can make correlation problematic 

– Characterizing new chamber equipment prior to payload testing is highly 

beneficial

– Ensure TCs placed so basic assumptions can be verified

– Make interfaces as flight like as possible

• Lessons learned: correlation

– Best practice - proceed from simple to complex; correlate to hot and 

cold

– Correlation to transients more reliable than to steady-state

– Use of single model for flight and ground test scenarios greatly 

improves efficiency

– RMS error very effective single measure of model quality

• Correlation, though complex, is worthwhile for flight predicts and 

finding systemic errors in the model
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